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A note on integrable two-degrees-of-freedom Hamiltonian 
systems with a second integral quartic in the momenta 

Filipe J Romeiras 
Depanamento de M a t e d c a  e Centro de Electmdinhica, lnstituto Superior Ticnico, 1096 
Lisboa Code% Portugal 

Received 3 laniary 1995, in final form 3 July 1995 

Abstract. 'Two of the simplest integrable Hamiltonians H(x,  y .  pr ,  p r )  = (p: + p 3 / 2  + 
V ( x .  y )  with a secand integral quartic in the momenta are those with palentials V3Cr.y) = 
by(3x2 + 16y') +d(x2 + 16y2) + q y  and V d x .  y )  = n(x4 +6x*y2 + 8y4) t c(x2 +4y2) + wy-l. 
We show how V3 can be obtained from b. In the process we obtain a new potential of 
the class, VN,  that includes both V, and V4 as particular cases. For this potentid we give 
the second integral of motion. separating variables, a Lax representation and a bi-Hsmiltonian 
structure, thus synthesizing the corresponding resnlts for potentials V3 and V4. The integrable 
extension VN + p.Cz is also discussed. 

1. Introduction 

Two-degrees-of-freedom Liouville inte-mble Hamiltonian systems 

y = -  
aH py = -- aH 
ay 

P x  = -ax . a~ 
aPx apr 

. a~ x = -  

with a Hamiltonian function in 'natural' form 
H ( x ,  Y. pX. PJ = T(P,, pr) + V ( x ,  Y) = 4 (P: + P;) + V ( x ,  Y) (2) 

and a second integral of motion quartic in~the momenta 
4 

Y, p x ,  ~ y )  = f m n ( X .  Y)P?P;  (3) 
lll."=O 
m+nS4 

have been the object of several studies in the past few years (see the review by Hietarinta 
[l] and references therein; see also [2-91 for more recent work). 

Probably the simplest systems of the above class are those with potentials [l] 
?3(x, y) = by (3x2 + 16~') + d (x' + 16~') 

?&, y) = a  (x4 + 6x'y' + 8y4) + c (x' +4y') 

where a ,  b ,  c and d are constant parameters. ?3 is one of the three integrable cases of 
the H6non-Heiles system while ?4 is one the four integrable cases of the two-degrees-of- 
freedom system with a quartic potential [l]. The corresponding second integrals of motion 
are 

~ ~ ( x , Y , P X . P ~ ) =  ( ~ ~ + ~ ' ( b y + d ) ] ~ - 4 b ~ ' p ~ ( x p p  -2yp.d 
-16bx4y(by + d )  - 2b2x6 

f4(X,Y,PxrPy) = ( P : + 2 r ' [ a ~ x ' + 2 y ' ~ + C ] ] 2 + 4 u X ' ~ X p g  - ' 2 y p 2 .  

03054470/95/195633+I0$19.50 0 1995 IOP Publishing Ltd 5633 
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Two other potentials of the class are the following extensions of ?3 and ?4 [I]: 

V3(X, Y )  = P d X .  Y )  + ?Y VdX, Y )  = P&. Y )  + UY-2 

where q,  U are constant parameters. The corresponding integrals are 

13(x7 Y ,  px7  py) = f3(x. Y. px3 P)) - vbx4 - 4 -2 ~ ( X , Y , P ~ . P ~ ) = ~ ~ ( ~ , Y , P , , P , ) + ~ ~ U X  Y . 

It is the purpose of the present paper to show that the potential V3 can be obtained from 
the potential V4 by a procedure which involves the following steps: (i) a translation of one 
of the canonical variables, y + y + bl(4a); (i) an appropriate choice of the parameters 
leading to the removal of the singularity at a = 0 introduced in the first step; and (iii) taking 
the limit a + 0. The same procedure enables us to obtain results associated with potential 
V3-for example, second integral of motion, separating variables, Lax representation, bi- 
Hamiltonian structure-from the corresponding ones for potential V4. 

We obtained this result when we attempted to generalize the recent finding by Ravoson 
er a1 [6], for potential V3, and by Ravoson er a1 [7] and Romeiras [8], for potential V4, 
of separating variables for systems with these potentials. We arrived at a potential VN that 
includes both V3 and V4 as pdcular  cases and gives the connection between the two. In 
fact the potential VN is the result of the first two steps of the procedure described above. 

In [6-81 the authors also obtained Lax representations [IO] for system (1). (2) with 
potentials V3 and V, by a method due to Fairbanks [ll].  Using the same method we have 
obtained a Lax representation for system (11, (2) with potential V , .  The same result can 
be obtained by applying steps (i) and (ii) of our procedure to the Lax representations given 
in [7, 81 for system (l), (2) with potential V4. 

Ravoson [I21 obtained a bi-Hamiltonian structure for system (l), (2) with potential V,. 
Using his method we have obtained a bi-Hamiltonian structure for system (I), (2) with 
potential VN, which for b = 0 gives a bi-Hamiltonian structure for system (l), (2) with 
potential V4, a result that is new as far as we know. 

It is known [ l ]  that the potentials V3 and V, have further integrable extensions in the 
class of systems we are considering: V, + px-’, V4 + px-’, where p is another constant 
parameter. Both these two potentials can be obtained from the corresponding integrable 
extension of VN, VN + px-’. 

In [7] the authors obtained separating variables and a Lax representation for the 
integrable extension V4 + px-2. Applying the first two steps of our procedure to these 
results, we have obtained separating variables and a Lax representation for the extension 
VN + K X - ~ .  Letting a + 0 we obtain a Lax representation for the integrable potential 
V3 + px-’ which is new and constitutes an alternative to the 3 x 3 Lax representation for 
this system given by Blaszak and Rauch-Wojciechowski [9]. 

Ravoson [lZ] obtained what he called a (p,s)-bi-Hamiltonian structure for system (I), 
(2) with potential V3+px-2. We were able to obtain the corresponding structure for system 
(I), (2) with potential V4 + p r 2 .  Applying the first two steps of our procedure to this 
result we then obtained the ( p ,  s)-bi-Hbiltonian structure for system (I), (2)  with potential 

The plan of the paper is as follows. In section 2 we describe the procedure to go from 
V4 to V3 through VN; as an application we obtain l3 from g via I N ,  the second integral of 
motion associated with the potential VN. In section 3 we show how we arrived at the pair 
VN, IN. In section 4 we give a Lax representation and a bi-Hamiltonian structure for system 
(l) ,  (2) with potential VN. In section 5 we consider the integrable extension V, + for 

VN + px-’. 
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which we give the separating variables, a Lax representation and a ( p ,  s)-bi-Hamiltonian 
structure. 

2. The procedure 

The procedure connecting the potentials V, and V3 can be described precisely in the 
following way. Define two, auxiliary functions @ and VN by 

w, y ;  a ,  c, U) = V4(x, Y )  
and 

where 

and Y = b2/(2a)  and Bo, @I are new constant parameters. Then 
V N ( X ,  Y ;  a, b, C, Bo, 01) = a  (x‘ + 6x y + Sy‘) +by (3x’ + Sy’) + c (x’ + 4y2)  

E = c - 2  4~ bo = Bo -Ply -~8cy2 + 2y3 BI = B1 + 16cy - 6 y 2  
2 2  

(4) 
Y (-PI + 3 2 6 ~ ~  + 24b2y2) -Bo + 26y (-@I + 166cy + 86’~’)  

S(4ay + 6)2 
+ 

4(4ay + 6) 
+ 

and 

V N ( ~ ,  Y ;  0, b ,  d,  0, - 2 ~ 6 )  = V3(x, y) .  
By applying the same procedure we can obtain 13  from 14. Define two auxiliary functions 

Y and I N  by 

W X , Y , P ~ , P ~ ; ~ , ~ , U )  = 4 ( x , y , p , , p J  
and 

Then 

IN(& Y ,  P x ,  p r ;  a,  b ,  C, Bo, Pi) = { p :  +2x2 [a(.’+ 2y2) + b y  + c]}’ 

+4x2(xp,  - 2yp,)[a(xp, .  - Zyp,) - 6pJ - Zb2x4 (x’ + 2y2) 

and 

I N ( x .  Y .  p z ,  P T ;  0, b ,  d, Bo, - - 2 ~ b )  = k ( X .  Y .  PZ. P Y )  t 

that includes both V, and V, as particular cases. In fact VN satisfies the identities 
The function VN can be interpreted as another potential of the class we are considering 
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that show that for a = 0 the potential V ,  reduces to V, while for a # 0 it reduces to V4 
either directly (for b = 0) or after a translation of the variable y (for b # 0). 

In this interpretation the function I N  is the second integral of motion associated with 
the Hamiltonian system (I), (2) with potential V,. It satisfies the identities 

I N ( x , Y .  P ~ . P ~ ; O , ~ , ~ . B ~ , B I ) = ~ ~ ( X . Y , P * .  P J + T X  @ I  4 

~ N ( ~ , Y . P ~ , P ~ ; ~ , O , ~ . B O . B I ) = ~ ~ ( X . Y , P ~ . P ~ ) -  xx Bo 4 Y -2 

1 b 
IN@. Y, Px> Pr; a, b, C ,  Bo, @ I )  = 1.v X , Y  + z, Pz, Pr; U , o ,  E ,  bo, b~ . ( 

3. Derivation of the result 

In this section we show how the pair V N ,  IN were obtained when we attempted to generalize 
the results of [MI on the existence of separating variables for system (1). (2) with potentials 
$3 and $4. These results are as follows. 

Let (U. U) be two new variables defined by 

U = -U -8  u=-LT+8 (6) 

(7) 

where 

U ( X ,  Y. pX, pr) = x-Y + S ( X ,  Y) 

P4 : S ( X ,  y )  = 2 [a (2 4- 2y2) + c] 

S ( X ,  Y. pX, = - x - z J 1 ( x ,  Y, pX. pr) 
and 

$3 : S(X ,  y )  = 2(by + d )  I = f 3  

I = f4. 

If we then eliminate the old variables ( x .  y, p z .  py) in terms of the new variables (U, U) 
and their time derivatives (ir, U) from the equations 

$ ( p : + p ; ) + V ( x , y ) = H *  I ( x , y , p X . p J )  =I* 
where H. and I, are the constant values of the integrals of motion, we obtain the two 
differential equations 

irz = g+ (U) 2 = g- (U) (8) 
where g+ are cubic polynomial functions, defined by 

$3 : g i ( z )  = -22% + 4d) + 46' (2H. JZ) 
P4 : g d z )  = -22% + 4c) + 8az  ( z a  5 a) . 

gi(z) = A(zI(7-H 7 fi) + &) 

We attempted to obtain a generalization of these results by proceeding in the following 

(9) 

way: start witli equations (8) but with g+ of the more general form 

where 

with the degrees of the polynomials n A  and nB left unspecified; introduce the transformation 
of variables in the form given by (6) and (7), with S left unspecified; solve for H and I ,  
with the requirement that H should be of the 'natural' form given by equation (2). 
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Adding and subtracting (8) and using (9) we obtain 
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[A(u)  + A(u)](2H) - [A(u)  - A(u)11/7+ B ( u )  + B(u) - U’- uz = 0 

[A(u)  - A ( u ) ] ( ~ H )  - [A(u)  + A ( u ) l J i +  B ( u )  - B(u)  - U2 + uz = 0 .  (10) 

Noting that 

A(u)  + A(u)  = A(-U - 6 )  + A(-U + 8 )  
= 2[a0 - alo + uz(o2 + 8’) - a3u(uz + 38’) + a4(u4 + 6uzSz + S4) + . . .] 

A(u)  - A(u)  = A(-U - 6 )  - A(-U + 6 )  
= -26[a, - z a p  + a3(3uZ + 82) - 4U4U(UZ + 82) + . . .] 

6 = - x - z J i  

and similarly for 5 ,  and that 

B = 2 ~ 3 x J T  

we conclude that in order to keep equations (IO) linear in H and I we have to take n A  = 1 
and n B  = 3. Equations (10) can then be written in the form 

(2H)A(-u)  + ( x - ~ Z )  [%B”(-a) - 4(x-’i)* - a lxz ]  = U’ - B(-U) 
(11) (2H)al+ (.“I) b3 = 4 (x-li) U +x2A(-o)  - 5’(-cr). 

Noting that the ‘natural’ form of the Hamiltonian implies that 

 and^ solving equations (1 1) for H,  we obtain 

(12) 
1 2  1 H = 5 P, + E (NzP,? + NI pr + No) 

where D, NO, NI and NZ are functions of ( x ,  y. p x )  defined by 

D =aob3+ai[2rZ(b3+2)+S~ -b$] 
No = bib2 - bob3 + xz(aoalx2 - a062 - albl)  

-S[a:x4 - 3(aoba +albz)xz + 2blb3 + 2b~]-2b3S2(3a1x2-4bz)-8b$S3 

+rZ(b3 + 2)[S; + 2S(b2 - SI) + 
-2r2[2rz(b, + 2) + SI - Sz]z 

- 2bl] 

NI = 2r (g) [4r2(b3 + 2) + 2S1+ b&] 

Z 

N2 = b3 (E) 
with r, SI, Sz given by 

as av 
X ax ax SI = 363s + alx2 - b2 Sz = x- - 2x- ’ - .  PI r = -  

Comparison of equations (12) and (2) yields the compatibility equations 

Nz = D N I  = O  No = 2 D V .  
The second of these equations forces 

b3 = -2 S2 = Si 
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which, when substituted into the other two, and after some simplification, leads to a system 
of partial differential equations for S 

that can be integrated with the result 
a1 2 
4 

where b and E are two new constants that must satisfy 

S ( X ,  y) = - ( x  + 2y2) + 2by + E 

ai 
ao 4- -(bz + 4E) - 4b2 = 0. 2 

Having obtained S one can easily complete the calculation of the integrals of motion H 
and I. If one introduces new constants a ,  c, Bo and PI,  defined in terms of those introduced 
so far in this section by 

~Po = bo + (2 - €)[bi  - 4 ~ ( 2 ~  - E ) ]  

PI = bi - 2(2c - E)(% + 36) 

ai a = -  

c = i (b2  + 6~) 
8 

we recover the pair V N ,  IN of equations (4) and (5). 
The polynomial functions introduced in (9) can be written in the form 

&(z) = 4[b2 + 2a(z + E - 2c)1(2H d) + G(z + E - 2c) 

where G is defined by 

~ ( z )  = p0 + o l Z  - scz2 - zZ3 .  (13)  
Without loss of generality we can set E = 2c, as this is equivalent to a translation of the 

separating variables z + E  - 2c + z that leaves the system (8) invariant. With this choice 
we finally obtain 

S(x, y )  = 2 [a (x' + 2y2) + b y  + c] (14) 

gi(z) = 4(b2 + 2az)(2H* + G(z) (15) 

and 

thus completing the calculation of the separating variables and the resulting differential 
equations (8) in these variables. 

If one introduces the variables ( p u ,  p"), defined by 
U il 

= 8(b2 + 2au) '" = S(b2 + 2au) 
then the transformation from ( x ,  y. p x ,  pr) to (U, U ,  pu ,  p d ,  as defined by (6) and (7) with 
I = IN and S given by (14) is canonical. In the canonical variables the Hamiltonian 
function HN = T + VN and the second integral of motion IN take the form 

HN = M u ,  p d  + h ( u ,  pu) - = h(u, P") - M u 3  PJ (16) 

where 

with G given by (13) .  
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4. Lax representation and bi-Hamiltonian structure 

Following [&RI and [ I l l  we have obtained a Lax representation [lo] with a spectral 
parameter A 

i ( A )  = [A@),  L ( A ) ]  = A(A)L(A) - L(h)A(A) 

for system (I), (2) with potential V ,  by taking the Lax pair in the form of two 4 x 4  matrices 

where L+ and A+ are 2 x 2 matrices 

with elements 

Here, 

z+ = U 2- = U  

are the separating variables introduced in (6) and g+ are the.two functions introduced in 
(15). 

We have carried out the calculation of the matrix elements with the following result: 

U+(Aj = A +T’+ S +x-’& 

V&) = -2(4ay + b)p ,  + 2r [r’ + S +4y (2ay  + b ) ]  + 2rx-’& 

W+(A) = -2AZ + 21 (r’ + S - 4c) + Rr(4uy + b)p, 

-4rZ[r z  + S + Sy(2uy + b ) ]  + Ry(2ay + b)S + 4b’x’ 

+2x-’ [ A  - 2r’ - 4y(2ay + b)]  f i  
~ ~ ( 1 )  = -A + 2 (r’ + s - 2c) 7 h”J7E; 
where r = p x / x  and S is defined by (14). 

a bi-Hamiltonian structure for system (I), (2 )  with potential V,. 
Following Ravoson’s work [I21 on system (I), (2) with potential v 3  we have obtained 

System (lj ,  (2 )  can be written more succinctly in the form 

x= JVH 

where I = (xi),(i(4 = ( x ,  y .  p x .  p , ) ,  V H  denotes the gradient of H and J is the skew- 
symmetric 4 x 4 matrix with non-zero upper-diagonal elements J13 = 524 = 1; J is the 
structure matrix associated with the canonical Poisson bracket (see, for example, [13]). 
System (lj ,  (2 )  is called bi-Hamiltonian if it can also be written in the form 

X = M V F  

where F is a second Hamiltonian function and A4 is a skew-symmetric 4 x 4 matrix which 
satisfies the Jacobi identity, i.e. M is the structure matrix associated with another Poisson 
bracket. 
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We have found that system (1). (2) with potential V ,  is bi-Hamiltonian with second 
Hamiltonian function F = .&/2 and structure matrix M with the following upper- 
diagonal elements: 

1 1 
Mlz = - (-xPr) 2F 

1 
Mi4 = F x[2(xz + 4Y2)(4ay + b)  + 8 ~ ( 2 b y  + C) +A(y)] 

1 
ZF 
1 

Mi3 = F{ p: + 2rz[a(x2 + 6y2)  + 3by + c ] }  

M u  = -[p,pr - x'(4ay + b)] M24 = -Mn 

M34 = 5j7{-4aX3py + pX[2(3x2 + 4y2)(4ay + 6 )  + Sy(2by + c)  + A ( y ) ] }  

where 

N Y ) =  

5. Generalization 

The potentials b and V, have further integrable extensions in the class of systems we are 
considering in this paper [ l ] :  

4by(3by + 2 ~ )  + 8b2y(by + C )  2@0 + b2 (-61 + 16bcy + 8b2y2) 
2(4ay + bI3 

+ 
WY + b)' 

v:(x, Y) = V3(& Y )  +w-Z V,"(x, Y) = V d x ,  y) + px-* 

where j~ is another constant parameter. These two potentials can both be obtained from the 
corresponding integrable extension of VN 

v,(x, y )  = vN(X, Y )  + Px-' 

with the associated second integral of motion 

z;(x,Y.Px*P,) = z N ~ x . Y , P x . P y ~ + 4 j L x - ~ { p : + x ~ S ~ x , y ) + ~ x - ~ }  
where S is given by (14). 

It was shown by Ravoson er al [71 that the separability result for potential V4 can be 
extended to potential V,". These authors also obtained a Lax representation for this system. 

By applying the procedure described in section 2 to the results given in [7] we have 
obtained the following results valid for system ( l ) ,  (2) with potential VL. 

The separating variables are given by equations (6)  and (7) with Z = Z, and S given 
by (14). The differential equations for-@,  U) are now 

where 

&(z) = 4(b2 + 2az) [ 2 H l  F R(z)]  + G(z) 

with 

R ( z )  = JIf + 4 j ~ z  

and G is the function defined by (13). The momenta canonically conjugate to ( U ,  U )  are 
now given by 

R ( u ) + R ( u )  i, 
2R(u) 8(b2 + 2 a u )  ' P" = 

R ( u ) + R ( u )  ir 
2R(u) 8(bZ + 2au) P E  = 



A note on integrable Hamiltonian systems 5641 

In the new canonical variables the Hamiltonian H l  = T + V: and the second integral of 
motion 1; can be written in the form 

with h(z, p J  defined by (17). 

U*(.\.) = A + r2 + s x-2 J- + 2fix-4 

V&) = -2(4ay + b)p ,  + 2r [r2 + S +4y(2ay + b)] 7 2rx-’J- + 4 f i r ~ - ~  

W*(A) = -2A2 + 2A (r2 + S - 4c) + 8r(4ay + b)p ,  

The Lax representation is of the form given by (18) and (19) with matrix elements 

-4r2 [r2 + S + 6y(2ay + b)] + Sy(2ay + b)S + 4b2x2 

F Z Y ’  [A - 2r2 - 4y(2ay + b)] JG 
-4px4 [A + 2r2 - 4y(2ay + b)]  

Y+(A) = -A + 2 (r’ + s - 2c) 7 2x-’,,/- - 8 f i ~ - ~ .  

Note that the separating variables (U, U) continue to satisfy the equations U+@) = U-(u) = 
0. By letting a -+ 0 we obtain a Lax representation for system (I), (2)  with potential Vf 
which is new and an alternative to the 3 x 3 Lax representation given for this system by 
Blaszak and Rauch-Wojciechowsk [9] .  

Ravoson 1121 obtained what he called a (p,  s)-bi-Hamiltonian structure for system (I), 
(2) with potential Vf, which can be defined in the following way: 

The quadruplet ( M ,  F,  J ,  H ) ,  where H is an integrable Hamiltonian defined in R4, 
F is the associated second integral of motion, J and M are 4 x 4 structure matrices 
associated with the canonical and another Poisson bracket, respectively, constitutes a ( p .  s)- 
bi-Hamiltonian structure if and only if there exist two smooth functions p and s defined in 
R4 such that the following equations are satisfied: 

MVF=pJVH M V H -  JVF=sVH.  

We have found that the quadruplet ( M ,  Z i ,  J ,  H i )  constitutes a ( p .  s)-bi-Hamiltonian 
structure when M has the upper-diagonal elements 

Mi2 = o  Mi3 = - 8 ~  Mu = -4x3(4ay + 6 )  
Mi4 = -4x3(4ay + b) + kox2pz M24 = -8 f ( x ,  y ,  p r )  + k,x2ps 

a f ( x . Y >  P A  
ax 

M34 = 4x2[3(4ay + b)p ,  - 4axps] - kax2 

where 

k, = 8 6  f ( x ,  y .  p z )  = fp: + x 2  [a(x2 + 6y2)  + 3by + c]  + w-’ 
and the functions p ,  s are given by 

p = M14M23 - Ml3M24 s = MI3 + M24 

In the limit a -+ 0 we recover Ravoson’s result for system (I), (2) with potential Vf. The 
result for b = 0, that is, for system (l), (2)  with potential Vt, is new. 
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