A note on integrable two-degrees-of-freedom Hamiltonian systems with a second integral quartic in the momenta

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 285633
(http://iopscience.iop.org/0305-4470/28/19/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:21

Please note that terms and conditions apply.

A note on integrable two-degrees-of-freedom Hamiltonian systems with a second integral quartic in the momenta

Filipe J Romeiras
Departamento de Matemática e Centro de Electrodinâmica, Instituto Superior Técnico, 1096 Lisboa Codex, Portugal

Received 3 January 1995, in final form 3 July 1995

Abstract

Two of the simplest integrable Hamiltonians $H\left(x, y, p_{x}, p_{y}\right)=\left(p_{x}^{2}+p_{y}^{2}\right) / 2 \div$ $V(x, y)$ with a second integral quartic in the momenta are those with potentials $V_{3}(x, y)=$ by $\left(3 x^{2}+16 y^{2}\right)+d\left(x^{2}+16 y^{2}\right)+\eta y$ and $V_{4}(x, y)=a\left(x^{4}+6 x^{2} y^{2}+8 y^{4}\right)+c\left(x^{2}+4 y^{2}\right)+\nu y^{-2}$. We show how V_{3} can be obtained from V_{4}. In the process we obtain a new potential of the class, V_{N}, that includes both V_{3} and V_{4} as particular cases. For this potential we give the second integral of motion, separating variables, a Lax representation and a bi-Hamiltonian structure, thus synthesizing the corresponding results for potentials V_{3} and V_{4}. The integrable extension $V_{N}+\mu x^{-2}$ is also discussed.

1. Introduction

Two-degrees-of-freedom Liouville integrable Hamiltonian systems

$$
\begin{equation*}
\dot{x}=\frac{\partial H}{\partial p_{x}} \quad \dot{y}=\frac{\partial H}{\partial p_{y}} \quad \dot{p}_{x}=-\frac{\partial H}{\partial x} \quad \cdot \dot{p}_{y}=-\frac{\partial H}{\partial y} \tag{1}
\end{equation*}
$$

with a Hamiltonian function in 'natural' form

$$
\begin{equation*}
H\left(x, y, p_{x}, p_{y}\right)=T\left(p_{x}, p_{y}\right)+V(x, y)=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+V(x, y) \tag{2}
\end{equation*}
$$

and a second integral of motion quartic in the momenta

$$
\begin{equation*}
I\left(x, y, p_{x}, p_{y}\right)=\sum_{\substack{m, n=0 \\ m+n \leqslant 4}}^{4} f_{m n}(x, y) p_{x}^{m} p_{y}^{n} \tag{3}
\end{equation*}
$$

have been the object of several studies in the past few years (see the review by Hietarinta [1] and references therein; see also [2-9] for more recent work).

Probably the simplest systems of the above class are those with potentials [1]

$$
\begin{aligned}
& \hat{V}_{3}(x, y)=b y\left(3 x^{2}+16 y^{2}\right)+d\left(x^{2}+16 y^{2}\right) \\
& \hat{V}_{4}(x, y)=a\left(x^{4}+6 x^{2} y^{2}+8 y^{4}\right)+c\left(x^{2}+4 y^{2}\right)
\end{aligned}
$$

where a, b, c and d are constant parameters. \hat{V}_{3} is one of the three integrable cases of the Hénon-Heiles system while \hat{V}_{4} is one the four integrable cases of the two-degrees-offreedom system with a quartic potential [1]. The corresponding second integrals of motion are
$\hat{I}_{3}\left(x, y, p_{x}, p_{y}\right)=\left\{p_{x}^{2}+2 x^{2}(b y+d)\right\}^{2}-4 b x^{2} p_{x}\left(x p_{y}-2 y p_{x}\right)$

$$
-16 b x^{4} y(b y+d)-2 b^{2} x^{6}
$$

$\hat{I}_{4}\left(x, y, p_{x}, p_{y}\right)=\left\{p_{x}^{2}+2 x^{2}\left[a\left(x^{2}+2 y^{2}\right)+c\right]\right\}^{2}+4 a x^{2}\left(x p_{y}-2 y p_{x}\right)^{2}$.

Two other potentials of the class are the following extensions of \hat{V}_{3} and \hat{V}_{4} [1]:

$$
V_{3}(x, y)=\hat{V}_{3}(x, y)+\eta y \quad V_{4}(x, y)=\hat{V}_{4}(x, y)+v y^{-2}
$$

where η, v are constant parameters. The corresponding integrals are

$$
\begin{aligned}
& I_{3}\left(x, y, p_{x}, p_{y}\right)=\hat{I}_{3}\left(x, y, p_{x}, p_{y}\right)-\eta b x^{4} \\
& I_{4}\left(x, y, p_{x}, p_{y}\right)=\hat{I}_{4}\left(x, y, p_{x}, p_{y}\right)+8 a v x^{4} y^{-2}
\end{aligned}
$$

It is the purpose of the present paper to show that the potential V_{3} can be obtained from the potential V_{4} by a procedure which involves the following steps: (i) a translation of one of the canonical variables, $y \rightarrow y+b /(4 a)$; (ii) an appropriate choice of the parameters leading to the removal of the singularity at $a=0$ introduced in the first step; and (iii) taking the limit $a \rightarrow 0$. The same procedure enables us to obtain results associated with potential V_{3}-for example, second integral of motion, separating variables, Lax representation, biHamiltonian structure-from the corresponding ones for potential V_{4}.

We obtained this result when we attempted to generalize the recent finding by Ravoson et al [6], for potential V_{3}, and by Ravoson et al [7] and Romeiras [8], for potential V_{4}, of separating variables for systems with these potentials. We arrived at a potential V_{N} that includes both V_{3} and V_{4} as particular cases and gives the connection between the two. In fact the potential V_{N} is the result of the first two steps of the procedure described above.

In [6-8] the authors also obtained Lax representations [10] for system (1), (2) with potentials V_{3} and V_{4} by a method due to Fairbanks [11]. Using the same method we have obtained a Lax representation for system (1), (2) with potential V_{N}. The same result can be obtained by applying steps (i) and (ii) of our procedure to the Lax representations given in $[7,8]$ for system (1), (2) with potential V_{4}.

Ravoson [12] obtained a bi-Hamiltonian structure for system (1), (2) with potential V_{3}. Using his method we have obtained a bi-Hamiltonian structure for system (1), (2) with potential V_{N}, which for $b=0$ gives a bi-Hamiltonian structure for system (1), (2) with potential V_{4}, a result that is new as far as we know.

It is known [1] that the potentials V_{3} and V_{4} have further integrable extensions in the class of systems we are considering: $V_{3}+\mu x^{-2}, V_{4}+\mu x^{-2}$, where μ is another constant parameter. Both these two potentials can be obtained from the corresponding integrable extension of $V_{N}, V_{N}+\mu x^{-2}$.

In [7] the authors obtained separating variables and a Lax representation for the integrable extension $V_{4}+\mu x^{-2}$. Applying the first two steps of our procedure to these results, we have obtained separating variables and a Lax representation for the extension $V_{N}+\mu x^{-2}$. Letting $a \rightarrow 0$ we obtain a Lax representation for the integrable potential $V_{3}+\mu x^{-2}$ which is new and constitutes an alternative to the 3×3 Lax representation for this system given by Blaszak and Rauch-Wojciechowski [9].

Ravoson [12] obtained what he called a (ρ, s)-bi-Hamiltonian structure for system (1), (2) with potential $V_{3}+\mu x^{-2}$. We were able to obtain the corresponding structure for system (1), (2) with potential $V_{4}+\mu x^{-2}$. Applying the first two steps of our procedure to this result we then obtained the (ρ, s)-bi-Hamiltonian structure for system (1), (2) with potential $V_{N}+\mu x^{-2}$.

The plan of the paper is as follows. In section 2 we describe the procedure to go from V_{4} to V_{3} through V_{N}; as an application we obtain I_{3} from I_{4} via I_{N}, the second integral of motion associated with the potential V_{N}. In section 3 we show how we arrived at the pair V_{N}, I_{N}. In section 4 we give a Lax representation and a bi-Hamiltonian structure for system (1), (2) with potential V_{N}. In section 5 we consider the integrable extension $V_{N}+\mu x^{-2}$, for
which we give the separating variables, a Lax representation and a (ρ, s)-bi-Hamiltonian structure.

2. The procedure

The procedure connecting the potentials V_{4} and V_{3} can be described precisely in the following way. Define two auxiliary functions Φ and V_{N} by

$$
\Phi(x, y ; a, c, v)=V_{4}(x, y)
$$

and

$$
V_{N}\left(x, y ; a, b, c, \beta_{0}, \beta_{1}\right)=\Phi\left(x, y+\frac{b}{4 a} ; a, \tilde{c},-\frac{\tilde{\beta}_{0}}{128 a^{2}}\right)-\frac{\tilde{\beta}_{1}}{16 a}
$$

where

$$
\tilde{c}=c-\frac{3}{4} \gamma \quad \tilde{\beta}_{0}=\beta_{0}-\beta_{1} \gamma-8 c \gamma^{2}+2 \gamma^{3} \quad \tilde{\beta}_{1}=\beta_{1}+16 c \gamma-6 \gamma^{2}
$$

and $\gamma=b^{2} /(2 a)$ and β_{0}, β_{1} are new constant parameters. Then

$$
\begin{align*}
& V_{N}\left(x, y ; a, b, c, \beta_{0}, \beta_{1}\right)=a\left(x^{4}+6 x^{2} y^{2}+8 y^{4}\right)+b y\left(3 x^{2}+8 y^{2}\right)+c\left(x^{2}+4 y^{2}\right) \\
& +\frac{y\left(-\beta_{1}+32 b c y+24 b^{2} y^{2}\right)}{4(4 a \dot{y}+b)}+\frac{-\beta_{0}+2 b y\left(-\beta_{1}+16 b c y+8 b^{2} y^{2}\right)}{8(4 a y+b)^{2}} \tag{4}
\end{align*}
$$

and

$$
V_{N}(x, y ; 0, b, d, 0,-2 \eta b)=V_{3}(x, y)
$$

By applying the same procedure we can obtain I_{3} from I_{4}. Define two auxiliary functions Ψ and I_{N} by

$$
\Psi\left(x, y, p_{x}, p_{y} ; a, c, v\right)=I_{4}\left(x, y, p_{x}, p_{y}\right)
$$

and

$$
I_{N}\left(x, y, p_{x}, p_{y} ; a, b, c, \beta_{0}, \beta_{1}\right)=\Psi\left(x, y+\frac{b}{4 a}, p_{x}, p_{y} ; a, \tilde{c},-\frac{\tilde{\beta}_{0}}{128 a^{2}}\right)
$$

Then

$$
\begin{align*}
I_{N}\left(x, y, p_{x}, p_{y} ;\right. & \left.; a, b, c, \beta_{0}, \beta_{1}\right)=\left\{p_{x}^{2}+2 x^{2}\left[a\left(x^{2}+2 y^{2}\right)+b y+c\right]\right\}^{2} \\
& +4 x^{2}\left(x p_{y}-2 y p_{x}\right)\left[a\left(x p_{y}-2 y p_{x}\right)-b p_{x}\right]-2 b^{2} x^{4}\left(x^{2}+2 y^{2}\right) \\
& -x^{4}\left\{\frac{8 b^{2} y(b y+c)}{4 a y+b}+\frac{2 a \beta_{0}+b^{2}\left(-\beta_{1}+16 b c y+8 b^{2} y^{2}\right)}{2(4 a y+b)^{2}}\right\} \tag{5}
\end{align*}
$$

and

$$
\dot{I}_{N}\left(x, y, p_{x}, p_{y} ; 0, b, d, \beta_{0},-2 \eta b\right)=I_{3}\left(x, y, p_{x}, p_{y}\right) .
$$

The function V_{N} can be interpreted as another potential of the class we are considering that includes both V_{3} and V_{4} as particular cases. In fact V_{N} satisfies the identities

$$
\begin{aligned}
& V_{N}\left(x, y ; 0, b, d, \beta_{0}, \beta_{1}\right)=\hat{V}_{3}(x, y)-\frac{\beta_{1}}{2 b} y-\frac{\beta_{0}}{8 b^{2}} \\
& V_{N}\left(x, y ; a, 0, c, \beta_{0}, \beta_{1}\right)=\hat{V}_{4}(x, y)-\frac{\beta_{0}}{128 a^{2}} y^{-2}-\frac{\beta_{1}}{16 a} \\
& V_{N}\left(x, y ; a, b, c, \beta_{0}, \beta_{1}\right)=V_{N}\left(x, y+\frac{b}{4 a} ; a, 0, \tilde{c}, \tilde{\beta}_{0}, \tilde{\beta}_{1}\right)
\end{aligned}
$$

that show that for $a=0$ the potential V_{N} reduces to V_{3} while for $a \neq 0$ it reduces to V_{4} either directly (for $b=0$) or after a translation of the variable y (for $b \neq 0$).

In this interpretation the function I_{N} is the second integral of motion associated with the Hamiltonian system (1), (2) with potential V_{N}. It satisfies the identities

$$
\begin{aligned}
& I_{N}\left(x, y, p_{x}, p_{y} ; 0, b, d, \beta_{0}, \beta_{1}\right)=\hat{I}_{3}\left(x, y, p_{x}, p_{y}\right)+\frac{\beta_{1}}{2} x^{4} \\
& I_{N}\left(x, y, p_{x}, p_{y} ; a, 0, c, \beta_{0}, \beta_{1}\right)=\hat{I}_{4}\left(x, y, p_{x}, p_{y}\right)-\frac{\beta_{0}}{16 a} x^{4} y^{-2} \\
& I_{N}\left(x, y, p_{x}, p_{y} ; a, b, c, \beta_{0}, \beta_{1}\right)=I_{N}\left(x, y+\frac{b}{4 a}, p_{x}, p_{y} ; a, 0, \tilde{c}, \tilde{\beta}_{0}, \tilde{\beta}_{1}\right)
\end{aligned}
$$

3. Derivation of the result

In this section we show how the pair V_{N}, I_{N} were obtained when we attempted to generalize the results of [6-8] on the existence of separating variables for system (1), (2) with potentials \hat{V}_{3} and \hat{V}_{4}. These results are as follows.

Let (u, v) be two new variables defined by

$$
\begin{equation*}
u=-\sigma-\delta \quad v=-\sigma+\delta \tag{6}
\end{equation*}
$$

where
$\sigma\left(x, y, p_{x}, p_{y}\right)=x^{-2} p_{x}^{2}+S(x, y) \quad \delta\left(x, y, p_{x}, p_{y}\right)=-x^{-2} \sqrt{I\left(x, y, p_{x}, p_{y}\right)}$
and

$$
\begin{array}{ll}
\hat{V}_{3}: & S(x, y)=2(b y+d) \quad I=\hat{I}_{3} \\
\hat{V}_{4}: & S(x, y)=2\left[a\left(x^{2}+2 y^{2}\right)+c\right] \quad I=\hat{I}_{4}
\end{array}
$$

If we then eliminate the old variables (x, y, p_{x}, p_{y}) in terms of the new variables (u, v) and their time derivatives (\dot{u}, \dot{v}) from the equations

$$
\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\dot{V}(x, y)=H_{*} \quad I\left(x, y, p_{x}, p_{y}\right)=I_{*}
$$

where H_{*} and I_{*} are the constant values of the integrals of motion, we obtain the two differential equations

$$
\begin{equation*}
\dot{u}^{2}=g_{+}(u) \quad \dot{v}^{2}=g_{-}(v) \tag{8}
\end{equation*}
$$

where $g_{ \pm}$are cubic polynomial functions, defined by

$$
\begin{array}{ll}
\hat{V}_{3}: & g_{\dot{ \pm}}(z)=-2 z^{2}(z+4 d)+4 b^{2}\left(2 H_{*} \mp \sqrt{I_{*}}\right) \\
\hat{V}_{4}: & g_{ \pm}(z)=-2 z^{2}(z+4 c)+8 a z\left(2 H_{*} \mp \sqrt{I_{*}}\right) .
\end{array}
$$

We attempted to obtain a generalization of these results by proceeding in the following way: start with equations (8) but with $g_{ \pm}$of the more general form

$$
\begin{equation*}
g_{ \pm}(z)=A(z)(2 H \mp \sqrt{I})+B(z) \tag{9}
\end{equation*}
$$

where

$$
A(z)=\sum_{k=0}^{n_{A}} a_{k} z^{k} \quad \dot{B(z)}=\sum_{k=0}^{n_{B}} b_{k} z^{k}
$$

with the degrees of the polynomials n_{A} and n_{B} left unspecified; introduce the transformation of variables in the form given by (6) and (7), with S left unspecified; solve for H and I, with the requirement that H should be of the 'natural' form given by equation (2).

Adding and subtracting (8) and using (9) we obtain

$$
\begin{align*}
& {[A(u)+A(v)](2 H)-[A(u)-A(v)] \sqrt{I}+B(u)+B(v)-\dot{u}^{2}-\dot{v}^{2}=0} \\
& {[A(u)-A(v)](2 H)-[A(u)+A(v)] \sqrt{I}+B(u)-B(v)-\dot{u}^{2}+\dot{v}^{2}=0 .} \tag{10}
\end{align*}
$$

Noting that

$$
\begin{aligned}
A(u)+A(v) & =A(-\sigma-\delta)+A(-\sigma+\delta) \\
& =2\left[a_{0}-a_{1} \sigma+a_{2}\left(\sigma^{2}+\delta^{2}\right)-a_{3} \sigma\left(\sigma^{2}+3 \delta^{2}\right)+a_{4}\left(\sigma^{4}+6 \sigma^{2} \delta^{2}+\delta^{4}\right)+\cdots\right] \\
A(u)-A(v) & =A(-\sigma-\delta)-A(-\sigma+\delta) \\
& =-2 \delta\left[a_{1}-2 a_{2} \sigma+a_{3}\left(3 \sigma^{2}+\delta^{2}\right)-4 a_{4} \sigma\left(\sigma^{2}+\delta^{2}\right)+\cdots\right]
\end{aligned}
$$

and similarly for B, and that

$$
\delta=-x^{-2} \sqrt{I} \quad \dot{\delta}=2 x^{-3} \dot{x} \sqrt{I}
$$

we conclude that in order to keep equations (10) linear in H and I we have to take $n_{A}=1$ and $n_{B}=3$. Equations (10) can then be written in the form

$$
\begin{align*}
& (2 H) A(-\sigma)+\left(x^{-4} I\right)\left[\frac{1}{2} B^{\prime \prime}(-\sigma)-4\left(x^{-1} \dot{x}\right)^{2}-a_{1} x^{2}\right]=\dot{\sigma}^{2}-B(-\sigma) \\
& (2 H) a_{1}+\left(x^{-4} I\right) b_{3}=4\left(x^{-1} \dot{x}\right) \dot{\sigma}+x^{2} A(-\sigma)-B^{\prime}(-\sigma) \tag{11}
\end{align*}
$$

Noting that the 'natural' form of the Hamiltonian implies that
$\dot{x}=p_{x} \quad \dot{y}=p_{y} \quad \dot{\sigma}=p_{y} \frac{\partial S}{\partial y}+\left(x^{-1} p_{x}\right)\left[-2\left(x^{-1} p_{x}\right)^{2}+x \frac{\partial S}{\partial x}-2 x^{-1} \frac{\partial V}{\partial x}\right]$
and solving equations (11) for H, we obtain

$$
\begin{equation*}
H=\frac{1}{2} p_{x}^{2}+\frac{1}{2 D}\left(N_{2} p_{y}^{2}+N_{1} p_{y}+N_{0}\right) \tag{12}
\end{equation*}
$$

where D, N_{0}, N_{1} and N_{2} are functions of $\left(x, y, p_{x}\right)$ defined by

$$
\begin{aligned}
& \begin{aligned}
D=a_{0} b_{3}+a_{1} & {\left[2 r^{2}\left(b_{3}+2\right)+S_{1}-b_{3} S\right] } \\
N_{0}=b_{1} b_{2}- & b_{0} b_{3}+x^{2}\left(a_{0} a_{1} x^{2}-a_{0} b_{2}-a_{1} b_{1}\right) \\
& \quad-S\left[a_{1}^{2} x^{4}-3\left(a_{0} b_{3}+a_{1} b_{2}\right) x^{2}+2 b_{1} b_{3}+2 b_{2}^{2}\right]-2 b_{3} S^{2}\left(3 a_{1} x^{2}-4 b_{2}\right)-8 b_{3}^{2} S^{3} \\
& +r^{2}\left(b_{3}+2\right)\left[S_{2}^{2}+2 S\left(b_{2}-S_{1}\right)+2 a_{0} x^{2}-2 b_{1}\right] \\
\quad & \quad-2 r^{2}\left[2 r^{2}\left(b_{3}+2\right)+S_{1}-S_{2}\right]^{2}
\end{aligned} \\
& \begin{aligned}
N_{1}= & 2 r\left(\frac{\partial S}{\partial y}\right)\left[4 r^{2}\left(b_{3}+2\right)+2 S_{1}+b_{3} S_{2}\right]
\end{aligned} \\
& N_{2}=b_{3}\left(\frac{\partial S}{\partial y}\right)^{2}
\end{aligned}
$$

with r, S_{1}, S_{2} given by

$$
r=\frac{p_{x}}{x} \quad S_{1}=3 b_{3} S+a_{1} x^{2}-b_{2} \quad S_{2}=x \frac{\partial S}{\partial x}-2 x^{-1} \frac{\partial V}{\partial x}
$$

Comparison of equations (12) and (2) yields the compatibility equations

$$
N_{2}=D \quad N_{1}=0 \quad N_{0}=2 D V
$$

The second of these equations forces

$$
b_{3}=-2 \quad S_{2}=S_{1}
$$

which, when substituted into the other two, and after some simplification, leads to a system of partial differential equations for S

$$
\frac{\partial S}{\partial x}=\frac{a_{1} x}{2} \quad\left(\frac{\partial S}{\partial y}\right)^{2}=-\frac{D}{2}
$$

that can be integrated with the result

$$
S(x, y)=\frac{a_{1}}{4}\left(x^{2}+2 y^{2}\right)+2 b y+\epsilon
$$

where b and ϵ are two new constants that must satisfy

$$
a_{0}+\frac{a_{1}}{2}\left(b_{2}+4 \epsilon\right)-4 b^{2}=0
$$

Having obtained S one can easily complete the calculation of the integrals of motion H and I. If one introduces new constants a, c, β_{0} and β_{1}, defined in terms of those introduced so far in this section by

$$
\begin{array}{ll}
a=\frac{a_{1}}{8} & \beta_{0}=b_{0}+(2 c-\epsilon)\left[b_{1}-4 \epsilon(2 c-\epsilon)\right] \\
c=\frac{1}{4}\left(b_{2}+6 \epsilon\right) & \beta_{1}=b_{1}-2(2 c-\epsilon)(2 c+3 \epsilon)
\end{array}
$$

we recover the pair V_{N}, I_{N} of equations (4) and (5).
The polynomial functions introduced in (9) can be written in the form

$$
g_{ \pm}(z)=4\left[b^{2}+2 a(z+\epsilon-2 c)\right](2 H \mp \sqrt{I})+G(z+\epsilon-2 c)
$$

where G is defined by

$$
\begin{equation*}
G(z)=\beta_{0}+\beta_{1} z-8 c z^{2}-2 z^{3} \tag{13}
\end{equation*}
$$

Without loss of generality we can set $\epsilon=2 c$, as this is equivalent to a translation of the separating variables $z+\epsilon-2 c \rightarrow z$ that leaves the system (8) invariant. With this choice we finally obtain

$$
\begin{equation*}
S(x, y)=2\left[a\left(x^{2}+2 y^{2}\right)+b y+c\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{ \pm}(z)=4\left(b^{2}+2 a z\right)\left(2 H_{*} \mp \sqrt{I_{*}}\right)+G(z) \tag{15}
\end{equation*}
$$

thus completing the calculation of the separating variables and the resulting differential equations (8) in these variables.

If one introduces the variables (p_{u}, p_{v}), defined by

$$
p_{u}=\frac{\dot{u}}{8\left(b^{2}+2 a u\right)} \quad p_{v}=\frac{\dot{v}}{8\left(b^{2}+2 a v\right)}
$$

then the transformation from $\left(x, y, p_{x}, p_{y}\right.$) to $\left(u, v, p_{u}, p_{v}\right)$, as defined by (6) and (7) with $I=I_{N}$ and S given by (14) is canonical. In the canonical variables the Hamiltonian function $H_{N}=T+V_{N}$ and the second integral of motion I_{N} take the form

$$
\begin{equation*}
H_{N}=h\left(u, p_{u}\right)+h\left(v, p_{v}\right) \quad-\frac{1}{2} \sqrt{I_{N}}=h\left(u, p_{u}\right)-h\left(v, p_{v}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
h\left(z . p_{z}\right)=4\left(b^{2}+2 a z\right) p_{z}^{2}-\frac{G(z)}{16\left(b^{2}+2 a z\right)} \tag{17}
\end{equation*}
$$

with G given by (13).

4. Lax representation and bi-Hamiltonian structure

Following [6-8] and [11] we have obtained a Lax representation [10] with a spectral parameter λ

$$
\dot{L}(\lambda)=[A(\lambda), L(\lambda)] \equiv A(\lambda) L(\lambda)-L(\lambda) A(\lambda)
$$

for system (1), (2) with potential V_{N} by taking the Lax pair in the form of two 4×4 matrices

$$
L(\lambda)=\left[\begin{array}{cc}
L_{+}(\lambda) & 0 \tag{18}\\
0 & L_{-}(\lambda)
\end{array}\right] \quad A(\lambda)=\left[\begin{array}{cc}
A_{+}(\lambda) & 0 \\
0 & A_{-}(\lambda)
\end{array}\right]
$$

where $L_{ \pm}$and $A_{ \pm}$are 2×2 matrices

$$
L_{ \pm}(\lambda)=\left[\begin{array}{cc}
V_{ \pm}(\lambda) & U_{ \pm}(\lambda) \tag{19}\\
W_{ \pm}(\lambda) & -V_{ \pm}(\lambda)
\end{array}\right] \quad A_{ \pm}(\lambda)=\left[\begin{array}{cc}
0 & 1 / 2 \\
Y_{ \pm}(\lambda) & 0
\end{array}\right]
$$

with elements

$$
\begin{aligned}
& U_{ \pm}(\lambda)=\lambda-z_{ \pm} \quad V_{ \pm}(\lambda)=-\dot{U}_{ \pm}(\lambda) \\
& W_{ \pm}(\lambda)=\frac{g_{ \pm}(\lambda)-\left[V_{ \pm}(\lambda)\right]^{2}}{U_{ \pm}(\lambda)} \quad Y_{ \pm}(\lambda)=\frac{\dot{W}_{ \pm}(\lambda)}{2 V_{ \pm}(\lambda)} .
\end{aligned}
$$

Here,

$$
z_{+}=u \quad z_{-}=v
$$

are the separating variables introduced in (6) and $g_{ \pm}$are the two functions introduced in (15).

We have carried out the calculation of the matrix elements with the following result:

$$
\begin{aligned}
& U_{ \pm}(\lambda)=\lambda+r^{2}+S \mp x^{-2} \sqrt{I_{N}} \\
& V_{ \pm}(\lambda)=-2(4 a y+b) p_{y}+2 r\left[r^{2}+S+4 y(2 a y+b)\right] \mp 2 r x^{-2} \sqrt{I_{N}} \\
& \begin{aligned}
W_{ \pm}(\lambda)= & -2 \lambda^{2}+2 \lambda\left(r^{2}+S-4 c\right)+8 r(4 a y+b) p_{y} \\
& \quad-4 r^{2}\left[r^{2}+S+6 y(2 a y+b)\right]+8 y(2 a y+b) S+4 b^{2} x^{2} \\
& \mp 2 x^{-2}\left[\lambda-2 r^{2}-4 y(2 a y+b)\right] \sqrt{I_{N}} \\
Y_{ \pm}(\lambda)= & -\lambda+2\left(r^{2}+S-2 c\right) \mp 2 x^{-2} \sqrt{I_{N}}
\end{aligned}
\end{aligned}
$$

where $r=p_{x} / x$ and S is defined by (14).
Following Ravoson's work [12] on system (1), (2) with potential \hat{V}_{3} we have obtained a bi-Hamiltonian structure for system (1), (2) with potential V_{N}.

System (1), (2) can be written more succinctly in the form

$$
\dot{x}=J \nabla H
$$

where $x=\left(x_{i}\right)_{1 \leqslant i \leqslant 4}=\left(x, y, p_{x}, p_{y}\right), \nabla H$ denotes the gradient of H and J is the skewsymmetric 4×4 matrix with non-zero upper-diagonal elements $J_{13}=J_{24}=1 ; J$ is the structure matrix associated with the canonical Poisson bracket (see, for example, [13]). System (1), (2) is called bi-Hamiltonian if it can also be written in the form

$$
\dot{x}=M \nabla F
$$

where F is a second Hamiltonian function and M is a skew-symmetric 4×4 matrix which satisfies the Jacobi identity, i.e. M is the structure matrix associated with another Poisson bracket.

We have found that system (1), (2) with potential V_{N} is bi-Hamiltonian with second Hamiltonian function $F=\sqrt{I_{N}} / 2$ and structure matrix M with the following upperdiagonal elements:

$$
\begin{aligned}
& M_{12}=\frac{1}{2 F}\left(-x p_{y}\right) \quad M_{13}=\frac{1}{2 F}\left\{p_{x}^{2}+2 x^{2}\left[a\left(x^{2}+6 y^{2}\right)+3 b y+c\right]\right\} \\
& M_{14}=\frac{1}{2 F} x\left[2\left(x^{2}+4 y^{2}\right)(4 a y+b)+8 y(2 b y+c)+\Delta(y)\right] \\
& M_{23}=\frac{1}{2 F}\left[p_{x} p_{y}-x^{3}(4 a y+b)\right] \quad M_{24}=-M_{13} \\
& M_{34}=\frac{1}{2 F}\left\{-4 a x^{3} p_{y}+p_{x}\left[2\left(3 x^{2}+4 y^{2}\right)(4 a y+b)+8 y(2 b y+c)+\Delta(y)\right]\right\}
\end{aligned}
$$

where
$\Delta(y)=\frac{4 b y(3 b y+2 c)}{4 a y+b}+\frac{8 b^{2} y(b y+c)}{(4 a y+b)^{2}}+\frac{2 a \beta_{0}+b^{2}\left(-\beta_{1}+16 b c y+8 b^{2} y^{2}\right)}{2(4 a y+b)^{3}}$.

5. Generalization

The potentials V_{3} and V_{4} have further integrable extensions in the class of systems we are considering in this paper [1]:

$$
V_{3}^{\mu}(x, y)=V_{3}(x, y)+\mu x^{-2} \quad V_{4}^{\mu}(x, y)=V_{4}(x, y)+\mu x^{-2}
$$

where μ is another constant parameter. These two potentials can both be obtained from the corresponding integrable extension of V_{N}

$$
V_{N}^{\mu}(x, y)=V_{N}(x, y)+\mu x^{-2}
$$

with the associated second integral of motion

$$
I_{N}^{\mu}\left(x, y, p_{x}, p_{y}\right)=I_{N}\left(x, y, p_{x}, p_{y}\right)+4 \mu x^{-2}\left\{p_{x}^{2}+x^{2} S(x, y)+\mu x^{-2}\right\}
$$

where S is given by (14).
It was shown by Ravoson et al [7] that the separability result for potential V_{4} can be extended to potential V_{4}^{μ}. These authors also obtained a Lax representation for this system.

By applying the procedure described in section 2 to the results given in [7] we have obtained the following results valid for system (1), (2) with potential V_{N}^{μ}.

The separating variables are given by equations (6) and (7) with $I=I_{N}$ and S given by (14). The differential equations for (u, v) are now

$$
\dot{u}^{2}=\left[\frac{2 R(u)}{R(u)+R(v)}\right]^{2} g_{+}^{\mu}(u) \quad \dot{v}^{2}=\left[\frac{2 R(v)}{R(u)+R(v)}\right]^{2} g_{-}^{\mu}(v)
$$

where

$$
g_{ \pm}^{\mu}(z)=4\left(b^{2}+2 a z\right)\left[2 H_{*}^{\mu} \mp R(z)\right]+G(z)
$$

with

$$
R(z)=\sqrt{I_{*}^{\mu}+4 \mu z}
$$

and G is the function defined by (13). The momenta canonically conjugate to (u, v) are now given by

$$
p_{u}=\frac{R(u)+R(v)}{2 R(u)} \frac{\dot{u}}{8\left(b^{2}+2 a u\right)} \quad p_{v}=\frac{R(u)+R(v)}{2 R(v)} \frac{\dot{v}}{8\left(b^{2}+2 a v\right)} .
$$

In the new canonical variables the Hamiltonian $H_{N}^{\mu}=T+V_{N}^{\mu}$ and the second integral of motion I_{N}^{μ} can be written in the form

$$
\begin{aligned}
& H_{N}^{\mu}=h\left(u, p_{u}\right)+h\left(v, p_{v}\right)-\frac{\mu}{4} \frac{u-v}{h\left(u, p_{u}\right)-h\left(v, p_{v}\right)} \\
& I_{N}^{\mu}=4\left[h\left(u, p_{u}\right)-h\left(v, p_{v}\right)\right]^{2}-2 \mu(u+v)+\frac{\mu^{2}}{4}\left[\frac{u-v}{h\left(u, p_{u}\right)-h\left(v, p_{v}\right)}\right]^{2}
\end{aligned}
$$

with $h\left(z, p_{z}\right)$ defined by (17).
The Lax representation is of the form given by (18) and (19) with matrix elements

$$
\begin{aligned}
& \begin{array}{l}
U_{ \pm}(\lambda)=\lambda+r^{2}+S \mp x^{-2} \sqrt{I_{N}^{\mu}+4 \mu \lambda}+2 \mu x^{-4} \\
\begin{aligned}
V_{ \pm}(\lambda)= & -2(4 a y+b) p_{y}+2 r\left[r^{2}+S+4 y(2 a y+b)\right] \mp 2 r x^{-2} \sqrt{I_{N}^{\mu}+4 \mu \lambda}+4 \mu r x^{-4} \\
\begin{array}{l}
W_{ \pm} \\
(\lambda)
\end{array} & =-2 \lambda^{2}+2 \lambda\left(r^{2}+S-4 c\right)+8 r(4 a y+b) p y \\
& -4 r^{2}\left[r^{2}+S+6 y(2 a y+b)\right]+8 y(2 a y+b) S+4 b^{2} x^{2} \\
& \mp 2 x^{-2}\left[\lambda-2 r^{2}-4 y(2 a y+b)\right] \sqrt{I_{N}^{\mu}+4 \mu \lambda} \\
& -4 \mu x^{-4}\left[\lambda+2 r^{2}-4 y(2 a y+b)\right]
\end{aligned} \\
Y_{ \pm}(\lambda)=-\lambda+2\left(r^{2}+S-2 c\right) \mp 2 x^{-2} \sqrt{I_{N}^{\mu}+4 \mu \lambda}-8 \mu x^{-4} .
\end{array}
\end{aligned}
$$

Note that the separating variables (u, v) continue to satisfy the equations $U_{+}(u)=U_{-}(v)=$ 0 . By letting $a \rightarrow 0$ we obtain a Lax representation for system (1), (2) with potential V_{3}^{μ} which is new and an alternative to the 3×3 Lax representation given for this system by Blaszak and Rauch-Wojciechowski [9].

Ravoson [12] obtained what he called a (ρ, s)-bi-Hamiltonian structure for system (1), (2) with potential V_{3}^{μ}, which can be defined in the following way:

The quadruplet (M, F, J, H), where H is an integrable Hamiltonian defined in \mathbb{R}^{4}, F is the associated second integral of motion, J and M are 4×4 structure matrices associated with the canonical and another Poisson bracket, respectively, constitutes a (ρ, s)-bi-Hamiltonian structure if and only if there exist two smooth functions ρ and s defined in \mathbb{R}^{4} such that the following equations are satisfied:

$$
M \nabla F=\rho J \nabla H \quad M \nabla H-J \nabla F=s \nabla H
$$

We have found that the quadruplet $\left(M, I_{N}^{\mu}, J, H_{N}^{\mu}\right.$) constitutes a (ρ, s)-bi-Hamiltonian structure when M has the upper-diagonal elements

$$
\begin{array}{lc}
M_{12}=0 \quad M_{13}=-8 a x^{4} & M_{23}=-4 x^{3}(4 a y+b) \\
M_{14}=-4 x^{3}(4 a y+b)+k_{a} x^{2} p_{x} & M_{24}=-8 f\left(x, y, p_{x}\right)+k_{a} x^{2} p y \\
M_{34}=4 x^{2}\left[3(4 a y+b) p_{x}-4 a x p_{y}\right]-k_{a} x^{2} \frac{\partial f\left(x, y, p_{x}\right)}{\partial x}
\end{array}
$$

where

$$
k_{a}=8 \sqrt{-a} \quad f\left(x, y, p_{x}\right)=\frac{1}{2} p_{x}^{2}+x^{2}\left[a\left(x^{2}+6 y^{2}\right)+3 b y+c\right]+\mu x^{-2}
$$

and the functions ρ, s are given by

$$
\rho=M_{14} M_{23}-M_{13} M_{24} \quad s=M_{13}+M_{24}
$$

In the limit $a \rightarrow 0$ we recover Ravoson's result for system (1), (2) with potential V_{3}^{μ}. The result for $b=0$, that is, for system (1), (2) with potential V_{4}^{μ}, is new.

Acknowledgments

The author is grateful to one of the referees for calling his attention to V Ravoson's thesis [12]. This work was supported by the Junta Nacional de Investigação Cientifica e Tecnológica, under project no STRDA/P/CEN/528/92.

References

[1] Hietarinta J 1987 Direct methods for the search of the second invariant Phys. Rep. 147 87-154
[2] Evans N W 1990 On Hamiltonian systems in two degrees of freedom with invariants quartic in the momenta of form $p_{1}^{2} p_{2}^{2} \ldots$ J. Math. Phys. $31600-4$
[3] Fordy A P 1991 The Hénon-Heiles system revisited Physica 52D 204-10
[4] Bozis G 1992 Two-dimensional integrable potentials with quartic invariants J. Phys. A: Math. Gen. 25 332951
[5] Lakshmanan M and Sahadevan R 1993 Painlevé analysis, Lie symmetries, and integrability of coupled nonlinear oscillators of polynomial type Phys. Rep. 224 I-93
[6] Ravoson V, Gavrilov L and Caboz R 1993 Separability and Lax pairs for Hënon-Heiles system J. Math. Phys. 34 2385-93
[7] Ravoson V, Ramani A and Grammaticos B 1994 Generalized separability for a Hamiltonian with nonseparable quartic potential Phys. Lett. 191A 91-5
[8] Romeiras F J 1995 Separability and Lax pairs for the two-dimensional Hamiltonian system with a quartic potential J. Math. Phys. 36 to be published
[9] Blaszak M and Rauch-Wojciechowski S 1994 A generalized Henon-Heiles system and related integrable Newton equations J. Mazh. Phys. 35 1693-709
[10] Lax P D 1968 Integrals of nonlinear equations of evolution and solitary waves Commun. Pure Appl. Math. 21 467-90
[11] Fairbanks L D 1988 Lax equation representation of certain completely integrable systems Comput. Math. 68 31-40
[12] Ravoson V 1992 (ρ, s)-structure bi-Hamiltonienne, separabilité, paires de Lax et integrabilité PhD Thesis University of Pau
[13] Olver P I 1986 Applications of Lie Groups to Differential Equations (New York: Springer)

